The Waldoboro Water Department is pleased to present a summary of the quality of the water provided to you during the past year. This report was prepared under the requirements of the Federal Safe Drinking Water Act to report annually the details of where your water comes from, what it contains, and the risks that our water testing and treatment are designed to prevent. The federal law allows water providers to make reports available online as the accepted form of notification. In our effort to reduce costs and environmental impacts of printing, we will provide the information online and will mail the report to customers who request it. The Department will notify all customers through bill inserts, news releases and our website that water quality reports for all systems are available online or upon request.

If you have any questions about this report, please call our customer service team at 1-800-287-1643 or e-mail us at customerservice@mainewater.com.

For the year 2018, we are pleased to report that your drinking water met all national primary drinking water standards.

Sources of Supply -- Three groundwater wells on town property provide the source water for the WWD water system. The Cross Street treatment facility provides ion exchange and aeration treatment to remove naturally occurring uranium and radon from the raw water. All water delivered to you is disinfected with sodium hypochlorite (liquid chlorine) for protection from bacteriological contaminants. Certified operators further ensure the quality of the water and that all primary and secondary drinking water regulations are met.

Sources of drinking water include rivers, lakes, ponds and wells. As water flows on the surface of the land or through the ground, it can dissolve naturally occurring minerals and in some cases, radioactive material, and can also accumulate substances resulting from human and animal activity. The Maine Drinking Water Program (DWP) has evaluated all public water supplies as part of the Source Water Protection Program. The assessments included geology, hydrology, land uses, water testing information, and the extent of land ownership or protection by local ordinance to see how likely our drinking water source is being contaminated by human activities in the future. In 2003, a source water assessment was completed for the Waldoboro system and indicates a low to moderate risk of significant contamination. Assessment results are available at town offices, public water supplies and the DWP (207.287.2070).

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban runoff, industrial or domestic wastewater discharge, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water runoff, and residential uses.
• Organic chemicals contaminants, including synthetic and volatile organics, are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
• Radioactive contaminants, which can be naturally occurring, or can be the results of oil or gas production or mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (EPA) prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations established limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline (800.426.4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800.426.4791).

**Protecting Water Sources:** Many people do not know that most contaminants enter rivers, lakes, and reservoirs with storm water runoff from streets, parking lots, golf courses, athletic fields, construction sites, farms, and residential neighborhoods. You can help reduce polluted runoff using the following guidelines:

• Restrict the use of lawn chemicals, especially before heavy rains.
• Dispose of pet or animal waste properly so that it does not wash into a nearby stream or storm drain.
• Have septic tanks inspected every two years, and cleaned as needed. Make septic system repairs as soon as possible.
• Do not pour used motor oil on the ground or into storm drains. Contact your town for proper disposal of household chemicals.
• Report muddy runoff from construction sites to your town’s zoning or wetland officials.

**Educational Information about Lead and Copper:** The Water Department believes it is important to provide you with information about the sources of lead and copper in drinking water and the health effects associated with them. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Department is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. We have a comprehensive corrosion control program in the system to reduce risk of lead leaching from our customers’ service line or internal...
plumbing. For information on the levels of lead and copper detected in your drinking water system, please refer to the table in this water quality report.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap water for 30 seconds to 2 minutes before using the water for drinking or cooking. If you are concerned about elevated lead levels, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at [http://www.epa.gov/safewater/lead](http://www.epa.gov/safewater/lead) or through the EPA’s Safe Drinking Water Hotline at 1-800-426-4791.

**Water Quality Data:** The following table lists the contaminant levels that were detected in your water system. The Safe Drinking Water Act allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. The Safe Drinking Water Act also allows monitoring waivers to reduce or eliminate certain monitoring requirements. In 2017, the Waldoboro Water Department was granted a three year “Synthetic Organics Waiver” from monitoring/reporting requirements for the following industrial chemicals: Toxaphene/Chlordane/PCB, herbicides, Carbamate pesticides, semivolatile organics. This waiver was granted due to the absence of these potential sources of contamination within a half mile radius of the water source.

**Microbiological Contaminants:** During 2018, none of the 12 distribution system samples tested positive for coliform bacteria.

**Violations:** No violations in 2018.

### National Primary Drinking Water Contaminants

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Test Date</th>
<th>Violation Y/N</th>
<th>Detection Value</th>
<th>Range of Detection</th>
<th>Federal/State Standard</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium, ppb</td>
<td>2017</td>
<td>N</td>
<td>2.9</td>
<td>NA</td>
<td>100/100</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride, ppm</td>
<td>2017</td>
<td>N</td>
<td>1.33</td>
<td>NA</td>
<td>4/4</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Radium-228 pCi/l</td>
<td>2014</td>
<td>N</td>
<td>0.532</td>
<td>NA</td>
<td>5/0</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Combined Uranium, ppb</td>
<td>2018</td>
<td>N</td>
<td>5.9</td>
<td>NA</td>
<td>30/0</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Arsenic, ppb</td>
<td>2017</td>
<td>N</td>
<td>1.3</td>
<td>NA</td>
<td>10/0</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Barium, ppb</td>
<td>2017</td>
<td>N</td>
<td>4</td>
<td>NA</td>
<td>2/2</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Uranium-238, ppb</td>
<td>2014</td>
<td>N</td>
<td>8.6</td>
<td>NA</td>
<td>30/0</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

### Disinfectants and Disinfection Byproducts -- Compliance for Haloacetic Acids and Total Trihalomethanes is based annual samples.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Test Date</th>
<th>Violation Y/N</th>
<th>Detection Value</th>
<th>Range of Detection</th>
<th>Federal/State Standard</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual chlorine, ppm</td>
<td>2018</td>
<td>N</td>
<td>0.74 ave</td>
<td>0.16-1.23</td>
<td>4/4</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHMs), ppb</td>
<td>2018</td>
<td>N</td>
<td>34</td>
<td>NA</td>
<td>80/NA</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>Haloacetic Acids (HAA5), ppb</td>
<td>2018</td>
<td>N</td>
<td>5</td>
<td>NA</td>
<td>60/NA</td>
<td></td>
</tr>
</tbody>
</table>
Lead and Copper Results—Samples are from consumer’s taps. 90% of the tests must be equal to or below the action level for rule compliance.

<table>
<thead>
<tr>
<th>Lead and Copper</th>
<th>Test Date</th>
<th>90th Percentile</th>
<th>Total Number of Samples</th>
<th>Samples Exceeding Action Level</th>
<th>Federal/State Standard</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper, ppm</td>
<td>2018</td>
<td>0.0929</td>
<td>10</td>
<td>0</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Lead, ppb</td>
<td>2018</td>
<td>2.7</td>
<td>10</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

**Action Level (AL):** The concentration of a contaminant which, if exceeded, triggers treatment or other requirements.

**Fluoride:** Fluoride may help prevent tooth decay if administered properly to children, but can be harmful in excess. US Department of Health and Human Services recommend a level of 0.7 ppm.

**Maximum Contaminant Level (MCL):** The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Some levels are based on a running annual average.

**Maximum Contaminant Level Goal (MCLG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

**Maximum Residual Disinfectant Level (MRDL):** The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

**Maximum Residual Disinfectant Level Goal (MRDLG):** The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

**NA:** Not applicable.

**ND:** Not detected.

**NTU:** Nephelometric turbidity unit (cloudiness of water)

**pCi/L, picocuries/Liter:** A unit of concentration for radioactive contaminants.

**ppm:** A unit of concentration equal to one part per billion.

**ppb:** A unit of concentration equal to one part per million.

**PWSID:** Public water supply identification number.

**Running Annual Average (RAA):** The average of all quarterly samples for the last year at all sample locations.

**TTHM and HAAS:** Total Trihalomethanes and Haloacetic Acids are formed as a byproduct of drinking water chlorination. This chemical reaction occurs when chlorine combines with naturally occurring organic matter in water.

**Total Coliform Bacteria:** Reported as the highest monthly number of positive samples, for water systems that take < 40 samples per month.

**Turbidity:** Monitored as a measure of treatment efficiency for removal of particles.

Your water system is designed and operated to deliver water to customers’ plumbing systems that complies with state and federal drinking water standards. This water is disinfected using chlorine, but it is not necessarily sterile. Customers’ plumbing, including treatment devices, might remove, introduce or increase contaminants in tap water. All customers, and in particular operators of facilities like hotels and institutions serving susceptible populations (like hospitals and nursing homes), should properly operate and maintain the plumbing systems in these facilities. You can obtain additional information from the EPA’s Safe Drinking Water Hotline at 800.426.4791

**Conserving Water Indoors and Outdoors:** Conserving water helps to ensure that we have an adequate supply of water for public health and safety, and reduces demands on the state’s water resources. The typical residential home uses 125 gallons of water per day; you can play a role in conserving water by becoming conscious of the amount of water your household is using. Conserving can lower your water bill and may reduce your sewer bill.

Here are some things you can do to conserve:
• Repair leaking toilets - check for toilet leaks by putting a drop of food coloring in the tank. If the food coloring seeps into the bowl without flushing, there is a leak.
• Consider installing a low-flow 1.6 gallon per flush toilet.
• Don’t use toilets as a wastebasket.
• Fix leaking fixtures.
• Run full loads in the dishwasher.
• Set the water level in the washing machine to match the amount of clothes being washed.
• Water lawns and gardens in the early morning.
• Use mulch around plants and shrubs.
• Use a bucket rather than a running hose to wash cars.

Additional water conservation ideas and a link to a water saver calculator can be found on the conservation section of our contractor’s website at www.mainewater.com